Quality Week 1993 Speakers & Titles

QUAIL JTY WEKK - 1993

Sixth Intemational Software Quality Week (QW-93)

7
/

25-28 May 1993
Sheraton Palace Hotel ¢ Market & New Montgomery ¢ San Francisco, Califomia

SPEAKERS & TITI XS

The following lists confirmed speakers scheduled forQuality Week 1993, as of the

cur rent dat ¢. Included are 1epular papers (approx. 45 winutes), special 90 minute
presentations, Invited Keynoter Addresses, and1/2-day Tutorials. The listis arra nged
inalphabetic o1der by speake 1 na me.

Papers are classified according 10 theinr assiened t1 ack: (1) dicates the technical
trtack; (M) indicates the ma nagement track; (A) indicatesthe applicationstiack . In
addition, (hutorial) mdicates a1/ 2-day Tutorial and (Keynote) indicates Invited Key -
noter Addresses.

0 0 0
Mr. John Ambrose & Maily Pham (Sierra Semiconductor, San Jose, CA): "Automatcd
Firmware Testing Using Simple Test Scripts”

Dr. Boris Beizer (ANALYSIS, Huntingdon Valley, PA): "Overview of Software ‘Test
Techmques" Tutorial.

Dr. Boris Beizer (ANALYSIS, Huntingdon Valley, PA): "Pwo Retrospectives From the
Year 2001" Keynote.

Mu. Bill Bently (Miles Inc., Filkhart, IN): "Tuformation Flow Analysis"

M. Mark Bergman (Zandem Compiitery: "Automated Testing vs. Debugeinge” Mini
Tutonal.

Ms. Antonia Bertolino (CNR/ 111, Pisa, ITALY): "Path Analysis and Fxperimentation
on Path Coverage via Minimum Test Covers”,

Prof. Vern J. Crandall (Sun Microsystem s, Mountain View, CA): "Using xccutive
Modules as Test Drivers (tentative) "

Mur. Bill Curtis (Camegic Mellon University, Pitisburgh, PA): "Maintaining the
Software Process Movement" Tutonal.

Software R escarch, Ince 1- San Francisco,Califorma




Quality Week 993 Speal ? Titles

Mr. Bill Curtis (Camegiec Mellon  Iniversity, Pittsburgh, PA): "Supcrio Softwaic
Organization" Keynote.

“w

Mr. Gregory 1. Daich (Software Technology Supporn Center, UT'): " cchnology Infusion

mto the Software ‘lest Process

Mu. Peter . Yeiler (Camegie Mellon University, Pittsburg, PA)  “Software Process
Development and Enactinent: Concepts and Definition”,

Mr. Mark A. Fewster (Racal-Redac System s 1.td., Gloucestershire G1.20 811" 009
Automated Testing: A Case History".

Ms. Francoise Yicheux-Vapue (Jolectricite de France, E%\\ Eviy CIEEDEX) "Software
Capabilitics Assessment: New Perspectives in Furope",

Mr. Tom Gilh (): "Advanced Software Inspections” Tutorial.

~1r. ‘Tomn Gilb (): "Practical Softwarer~ ctrics for Software Process a 1d ’roduct Qua
1y"Mini-Tutorial.

1 (Grove Consultants, Cheshire): "Where is = ST Heading?

Dr. Dorothy R. Grahan
s for Testing Tools" Keynote.

Directions and ‘Irend

Major Christine W. Haapala (USAI" (INIDS), :S:::M.S: D.C v "Verifica ion and
Validation in an Interactive Software Development Environment”,

Prof. Richard Hamlet & Dr. Jeflvey M. Yoas (Porntland State University, Pornland, OR):
“Foundations of Program Testing: Can ‘Tested Software be ‘Irasted? " Mini-Tutorial
{Thursday or Yriday} .

Prof. Mary Jean Harrold (Clemson Iniversity, Clemson, SC): (Subject is "object-
oriented™”; title being sent).

Dr. Herb Heceht Aftiz\f In-, Beverly Hills, CA): "Race Conditions — An Impor ant
Causce of Failuies

73.. ,_c:::_m: Hops (Jet Propulsion Laborateries, Pasadena, CA): "Formal Fonctional
st Designs: Bridging the Gap Between ‘Test Requirements and Test Specifications”.

My, Dean O. Hoshizaki (Microsoft Corporation, Redmond, WA) "Risk Based ‘Testing
Application Testing!

Mr. William Howden (University of California, San Diego, San Diego, CA): "Scientific
Foundations for Practical Software ‘Testing and Analysis” Keynote.

Mr. Gilbert A, Yacono (Limbach Intemational, Pittsburgh, PA) "Automating Fes
Database Management For Maximun Productivity”,

Ms. Karen S. King (Cadence Systems Corporation, Beaverton OR): "hnolemen mg
Software Process Improvement ',

Software Research, Inc. -2 San ‘rancisco, Califor 11




Formal Functional ‘rest. Designs with a Test Representati on Language

Jonathan M Hops

Jet Propulsion laboratory
California institute of Technology

Abstract: This article discusses the application of the Category-Par tition Method
[5] to the test design phase. The method provides a formal framework for reducing
the total number of possible test cases to a minimum logical subset for effective
testing. An automatic tool and a formm] language have been developed to implement
the methodandproduce the specification of test cases.

Keywords: software testing, test designs, software life cycle, testing lifecycle,
formal test representation, test specifications, category-par tition method, test
representation | anguage, TRI.

1. Introducti on

The focus of this paper 1S how the category-partit ion method, a method for speci fying
functional tests [5], can be applied to the test design phase of the test ing
lifecycle. Before describing the method itself, we need to clear 1y clef ine what the
requirements are for the test design phase. This discussion can he found below, in
Section ?.

Section 3 centers on some methods often used in the test design phase. The category-
partition method is described in detail . Included in this section i S the background
of the nmethod, a step by step description of how to implement it, ant] a demenst rat i on

of the method applied to a simple exanpl e.

The subsequent Ssection, Section 4, int roduces the Test Representation lLanguage (TR1) .
TRI. is a formal |anguage for specifying test designs that have been created wWith the
catcgory-partit ion nmet-hod anti a computer tool for automatically generating test cases
fromthe formal specification. The example from Section 3 1S presented, using the
TRL, format .

The conclusions in Section 5 provide some insight into the results that have been
achieved, and sone suggestions for further study arid data collection that may he
necessary to assess the contribution of the TRI tool developed and the category -
partition method used.

2. Problem Definition
2.1 Testing Life Cycle

in the field of software engineering, we are often faced With the challenge of
creating an integrated, working system based on inadequate and meager requirements.
The waterfall lifecycle for software development -  where requi rements ar €
systematically refined, architectural anti detail design established, code wi itten,
and then the system tested, has hecome an accepted method for dealing With the
ambiguities and vagueness of the original requi rements. The testing portion of this
development lifecycle, however, IS not so clearly defined or widely accepted.

Figure 2-1 depicts the testing life cycle used in some of the development projects at
Jet Propul sion lLaboratory, operated for NASA by thel California Institute of

Technology . This life cycle is described in Jrl’/s Software Management Standard, D-
4000 [2] , and is similar to the software development Standard adopted by the,
bepartment of Defense, DOD-STD-2167A [3] . Table 2-1 defines the acronyms used in

Figure 2-1, along with the title of the document it stands for, the phase in the
testing lifecycle during which it is used or produced, and finally, whether a
description of its contents is in the Standards [?] anti [3].

aMmi - 1




Figure 2-l1Testing Life Cycle

; '
P — ' o TEST PLANNING : . WPAWIP
SMP ‘ *TEST MANA GEMENT PLAN
FRD [ T e e
FDD ——"f TEST REQUIREMENTS ANALYSIS . SSITP-1
SRD L - y STP-1

SSD-1
S5D-2 *TEST DESIGN «
PSOM

———

.*'8S!ITP TEST DESIGNS
+STP TEST DESIGNS

V..,

SOM —— TEST SPECIFICATION . SSITP-2

o STP-2

Y — ==
RDD
CODE B TEST EXECUTION - PFR/AR
L A

*TEST ANAL YSIS . SSITP-3

= . STP-3

LEGEND: D-4000 /NPUT D-4000 PHASE OR OUTPUT

My - 2

‘PHASE OR OUTPUT NOT DEFINED /N D-4000




Inputs and Outputs

D- 4000 JPL’ s So {twa re Managenent
St andard ‘ _

TP _ Task inplenentation Plan

sMp | Software Managenent Plan__

WPA/WIP Wor k Package Agreement/ Work

B _ i mpl enentation Plan

Test Test Managenent Plan for

Managenent defining procedures of conplete

Plan testing cycle

FRD Functional Requirenments
Docunent

FDD Functi onal Design Docunent

SRD Software Requirenments Docunent

SS1TP-1 SubSystem I ntegration anti Test
Plan - 1 , requi rements

STP-1 Software Test Plan -1,

) requi rements

SSDh-1 Sof tware Specification Document
-1, architectural design

SSDh-2 Soft -ware Specification Document

_ _ =2, detail design "

PSOM Prelimnary Software Operator’s
Manual

SSITP Test SubSystem Integration and Test

Designs Plan - Test Designs for SSiTp-1

STP Test Software Test Plan - Test

Designs _ Designs for STP-1

S oM Software Cperator’'s Manual

SSITP-2 SubSystem Integration and Test

| Plan -2, detailed procedures

STP-2 Software Test Plan -2, detailed
procedur es

RDD Rel ease Description bocunent

PFR/AR Probl em Failure Report/ Anomaly
Report

5817pP-3 SubSystem Integration and Test
Plan -3, report

sTP- 3 Software Test Plan -3, report

JWMH - 3

Testing lLife
Cycle Phase

Test Planning

Test Planning

Test Planning

Test Planning

Test Requirements
Anal ysi s .
Test Requirenents
Anal ysi s

Test Requirements
Anal ysi s

Test Requirements
Anal ysi s

Test Requirements
Anal ysi s
Test Design

Test Design

Test Design

Test Design

Test Design

Specification

Specification

Speci fication

Execution

FExecution

Test Analysis
Test Analysis

St andar ds
Exist?

ves

ves

ves

ye S

no

yos

yes

yes

ves

yes
no
no

yes

yes
ye S

ves

ye?s
yes

yes




As noted in both Figure 2-1 and Table 2-1, a kcey component is missing from the
standards - a definition of the inputs, outputs and purpose of the Test Design Phase.
This gap between the requirements for testing, produced in the Test Reguirements
Analysis phasc, and the detailed test proccdures, produced in the Test Specification
phase, is the phase during which the category-partition method can be most useful.
The test design phase is explored in detail in the following section.

2.2 Test Design Phasc

The dictionary definition of the word "design" is to conceive and to devise for a
specific purposc. During the Test Design Phase, the “specific purposce” that the test
engincer is concerned with is mecting the test objectives and requirencnt s determined
in the Test Requircments Analysis Phase; what the toest onginecer is trying "to
conceive and to devise" are the necessary and sufficient ways of validating the
functional and performance reqguircments of the entire system.  Therefore, the purposc
of the Test Design Phase is to conceive and specify the environmental and systemn
altributes that verify requirements and neet test objectives for cach test
requirement in the test plan, and for cach requirement in the functional and softwarc
requirements docunents.

Bascd on this definition of the purposc, the inputs to this phase are relatively
simple to jdentify. They arc:

a) the test objectives as documented in the SubSystom Integration and Test
Plan and/or the Softwarce Test Plan;
) the functional and performance requircnents and systom design as

documented in the Software Spoecification bDocuments or the Functional and
Software Requircments Document s; and

) any other pertinent design or requircnents information that wmay boe
available, such as Interface Agrecnents and the Preliminary Softwarce
Operators Manual.

The outputs from the Test Design Phase to the next phasce, however, arce not so casy to
identify. 7he products we are trying to develop arc ways to validate requircments,
which wil) be referred to as test designs. These designs are not expected to bhoe test
procedures specified to enough detail to be run by another test engineer or possibly
a third party; the test procedures written to that detail will eventually be writien
in the subscquent phase of the testing lifecycle, the Test Specification Phasce.  The
test designs can have some awbiguity in the scquence of steps, the testing range of
certain parameters, or the actual testing steps themsclves.

Additionally, cach test design should directly dmply or specify a group of tost
casces. The Lest cases should have specific values for environmental and/or systeomn
paramcters that have an effect on how the systom under test will behave.  Fach of the
test cases should also include the expecteoed response or behavior of thoe systeow.

With this in mind, the outputs of the Test Design Phase can boe stated as:

a) test design specifications that:
1) are traccable Lo test objectives and functional and/or softwarc
requirenents;
2) directly imply or spccify a group of test cascs that can bo
individually exccuted but share the sawe sct-up procedures;
3) identify the environmental and systom features that are Lo boe sct
or obhscrved to control and determine the behavior of the syston;
4) pass criteria for the group of test casces; and
b) test cases thal specify:
1) the environmental and/or systeomn paramcters and system statoes that
should exist boefore the test casce is excecuted;
2) the test action or step to be taken to initiate the systeom
behavior; and
3) the expected system behavior after the action has been taken.

1n the following scctions, methods for determining the test designs and for
automatically producing the documentation for the test cases are presented.

3. Method of Solution




3.1 Test Design Methods

There are nmany ways to create test designs that meect the needs of a certain project
Four of these nethods are discussed below. the representative set nethod, the ad-hoc
met hod, the all-permutations method, and finally the category-partition nethod

A comon nethod for determining the number and contents of the test designs and test
cases that should be transforned into test procedures is selecting a representative
set of normal conditions and paraneters that prove that the system works and wecets
requirenments . On a project using this method, the emphasis wWill be on demonstrating
that the system works rather than testing the systemto detect failures, but the
repeatability of the test procedures and the traceability to the requirenments being
tested is generally good.

On projects that are particularly short of tine, noney, and personnel, the test
design phase is alnobst totally skipped. In this case, the test design method can be
characterized as ad-hoc. The ad-hoc test case selection is particularly prone to

m ssing inportant aspects of the system behavior that could help determ ne where the
probl ens are. The emphasis on a project using this nmethod is al nost al ways on

getting the system “out-the-door”. Traceability to requirements is often poor. And
nost devastating of all, test repeatability is sacrificed; when a failure eventually
occurs and the problem solved, it is very difficult to verify that the fix was

correct because the conditions that caused the failure cannot be repeated.

Though not often seen, another method for selecting test designs and cases is a brute
force nmethod of analyzing all pernutations of system paraneter val ues. Wth this

nmet hod, the test designs and cases are easil¥ traced to requirenents and test

obj ectives, but it takes a lot of tine and effort to analyze each pernutation and
deci de which ones are valid and which ones are neaningl ess. This method allows the
test engineer to find test cases that lie on the extrenme boundary of the valid input
space, and therefore is good for error detection.

A recommended net hod for deternmining test designs is the category-partition nethod
[5] . This nmethod conbines the benefits of choosing normal cases with the error
exposing properties of the all-pernmutations nethod. Traceability can be naintained
quite easily by creating a test design for each test objective in the test plan.
Using an automatic tool to create the test cases based on the test design, the
subsequent effort to transformthe test cases into test procedures is sinplified
The method allows the rapid elimnation of undesired test cases from consideration,
and easy review of test designs by peer groups

Section 3.2 discusses the category-partition nmethod in general, and is followed by
section 4 which presents the Test Representation Language (TRL) that can be used to
i npl ement the method and produce the test cases using the TRL tool

3.2 Cat egory-Partition Method
3.2.1 Backgr ound

The category-partition nmethod was first presented by Ostrand and Balcer in 1988 [5]

A followon paper in 1989 [1] discussed a test specification |anguage anti a tool for
the automatic generation of test scripts that could be conpiled and executed in the
test environnent that they had set up at Siemens Corporate Research. As pointed out
in these two papers, the category-partition method is a way of analyzing the
functional and software requirenments of a systemin order to determ ne test cases to
be run. The method relies exclusively on the test engineers’ reading of the

requi rements and design documents and their judgement of exactly which test cases

shoul d be selected for procedure devel opnment. 1f a formal requirenents specification
| anguage is used to document the requirements and design, other nmethods nmay be nore
useful, such as the ones described in the paper by Richardson, et. al. [6]. However,

it is not often that the test engineer is presented with a functional requirements
docunent or a software requirements docunent that is witten this formally.
Therefore, a structured method, such as the category-—partition nethod, is needed to
provide a systematic approach to devel oping test specifications from infornmal
representations of the required system behavior.

JVMH - 5




The foll owi ng sections discuss the steps iN the category-partition method. The St eps
have been organized differently than the procedure discussed in the primary
references, [5] and [1]. The organization of steps presented below has proven usefu
in conmmunicating the method to the test engineers on our projects.

3.2.2 Steps in the Category-Partition Method

The category-partition nmet hod consists of four steps:

1 Functional Deconposition

2 Cat egory Anal ysis;

3 Partition Value Analysis; and
4 Partition Constraint Analysis.

Each of these steps are discussed in the follow ng sections.
3.2.2.1 Step 1: Functional Deconposition

The first step in the category—partition method is functional decomposition. |'he
purpose of this step is to deconpose the specification and/or requirements into
functional units that can be tested independently. A secondary purpose of this step
is to identify the paraneters that affect the behavior of the systemfor each
functional wunit.

The requirement space is subdivided into subgroups, which nay or nay not overlap in

sone aspect. Each subgroup clearly identifies the requirenents being tested and the”
input, output, and environmental paraneters that affect how the system neets the
requirements .  The types of parameters that shoul d be considered are: user inputs,

inputs fromexternal interfaces, environmental inputs, outputs to another
(observabl e) portion of the system outputs to a user or external interface, outputs
to the environnent or state of the system or nmaybe even the sequence of events.

Note that there will be times when sone of the paraneters are not explicitly stated
in the requirenents specification, and therefore inplicit paraneters will have to be
det er m ned

For an exanple, assune the follow ng requirement specification has been deconposed
from the requirenent space

Sort an integer array either in ascending or descendi ng order,

The paraneters mentioned explicitly in this requirernents statement are the array, and
an indication of sort order. Implicitly, however, the result of the sort operation
is also a paraneter for this requirenent.

The next step of the procedure is to further- analyze the paranmeters identified and
determne the characteristics, or categories, of the parameters that affect program
or system execution.

3.2.2.2 Step 2: Category Analysis

The second step in the category-partition method i s category anal ysis. The work done
in the previous step, identifying functions] units and explicit and inplicit
paraneters, is carried further by determining the properties or sub-properties of the
paraneters that would nake the system behave in different_ ways. The test engineer
shoul d anal yze the requirenents and determ ne the features or categories of ecach
paraneter and how the system may behave if the category were to vary its val ue. If
the paraneter undergoing refinement were a data-item then categories of this data-
item may be any of i1ts attributes, such as type, size, value, wunits, frequency of
change, or source.

Choosing the “array” fromthe example in step 1 for further refinenent, the
categories that may be derived fromthe specification are “array size", “the val ues
in the array”, and, because the functional unit is a sorting function, “the
arrangenent of the values in the array”

As can be seen, the original requirement statement said nothing about the valid range

JWH - 6



of “array size”. This step, along with the next one, tend to point out deficiencies
in the requirements specification. The test engineer will have to work closely with
the author of the requirenents and the designers in order to resolve the ambiguities
and uncertainties that surface fromthis anal ysis.

3.2.?.3 Step 3: Partition Value Analysis

After all the categories for the parameters of the functional unit have been
determined, the next. step is to partition each category’'s range space into mutually
exclusive values that the category can assune. In choosing partition val ues, the
focus should be on error exposing val ues. The discussion on boundary val ue testing
in Mers’ book [4], and revealing subdomains in the paper by Wyuker and Ostrand [7]
shoul d prove useful as references.

‘The partition values should include all possible kinds of values, especially the ones
that will naximze error detection. I nportant values to |ook for are boundary

val ues, extremal and non-extremal val ues, values that represent special cases or
interactions, and valid ang invalid val ues.

Returning to the exanple and using the category “array size” for illustration, the
five partition values are:

1) 0

2) 1

3) 2to the Upper Bound minus 1

q) Upper Bound

5) greater than the Upper Bound
It can be seen that “O and “greater than the Upper Bound” represent error conditions
that the sort. function will have to process, while “l”, and “Upper Bound” represent
speci al cases or boundary val ues. The reason the all the values between “2” and the

“Upper Bound mnus 1" (inclusive) have been grouped together is because the sorting
function is expected to behave the sane in this range; an error in processing that
occurs for a particular value in this range should occur for all the values in this
range . It is left up to the Test Specification Phase of the testing lifecycle to
determ ne the exact, or random, values that should be used to verify this partition
in the test procedure.

The fact that two of the five values in this example have already been identified as
being representative of error conditions gives us a head start on the next step of
the category-partition nmethod.

3.2.2.4 Step 4: Partition Constraint Anal ysis

The purpose of this final step is to refine the test design specification so that
only the technically effective and economically feasible test cases are inplied
There are three types of constraints defined in the category partiticn method as
described in [5]: Errors, Limits, and Conditi ons.

An Error Constraint applied to a partition value is used to indicate that the
partition value represents an exception state that the system under test should not-e
and report w thout processing any further. partition values of this type need to be
tested in one test case but no nore, due to the way exceptions are usually handl ed.
An exanpl e of partition values that should have Error Constraints are “O" and
“greater than the Upper Bound” in the category of “array size".

A Limit Constraint is for limting the number of times a partition value will be used
in the resulting test cases. Limit Constraints can be applied to a test design in
order to control the actual nunber of test cases inplied. Wien economic feasibility,
as in restricted tine and resources, is a factor in the test execution, the Limit
Constraint will help the teSt engineer to elimnate some of the test cases that seem
redundant . In the exanple we have been following, the test engineer may want to
limt the nunber of times that an “array size" of “Upper Bound” is used

The remmi ning type of constraint is the Conditional Constraint. Determining these
types of constraints is where the majority of the intellectual] effort is spent. Thi s

JMH - f1




part of the analysis specifies Wiich partition values from one category can be used
with the partition values of another category. Conditional Constraints are specified
in pairs: pre-conditions and post-conditions. Pre-conditions are states or
conditions that nust co-occur for a particular partition value to be used in a test
case; post-conditions are the states or conditions that are set when a partition

val ue is used. To illustrate their use, a slightly nore involved exanple should be
di scussed

Starting with the category of “array size" and the partitions determined in the
previ ous step, we analyze the types of conditions that are expressed by each

partition val ue. It can be seen that the values represent 3 separate conditions:
a) “error occurs” (for partition values of "0" and “greater than Upper
Bound”) ;
) “size is normal” (for partition values of “2 to Upper Bound minus 1" and
for “Upper Bound”); and
c) "size represents a degenerate array” (for an array size of “I")
Clearly, if everything else is set appropriately, the valid partition values of the
category “result” will be dependent on these conditions. Let’s assume the following
4 partition values were identified in Step 3 for the “result” category: “error
notification”, “array unchanged”, “array in ascending order”, and “array in
descendi ng order”. A pre-condition for the result “error notification” is that the

post-condition “error occurs” has been set. For the values of “array in ascendi ng
order” and “array in descending order” the post-condition of “size is normal” nust,
have been set before these values could be used in a valid test case. The “result.”
of “array unchanged” could possibly be a result of many conditions, one of which s
that the “array size" is »1", where the “sSize represents a degenerate array”.

3.2.3 Exanpl e application of Category-Partition Method

Tabl e 3-1 provides the results of the nethod applied to the exanpl e that has been
di scussed Throughout the previous sections of this article.

JVH - 8




-~ ey

0O T nOnl
| &I %0 LTBOTIUSPT ssniea, il 83”0 3 ,U0p
i W TROoTIUSPT Lou,, I m wI9PI0 DUTPUSOSSD,, L5S M I9PI0C DUTPUITSID
: WLEV L aUT L VU, 1) MATPAY DU LpUIUDdE LD ATPAV DU L puUTIUD E
: L TRWIOU ST 32TS, J4I _ wSIN000 0318, LGS | poTzToadsun _ I9PI0 LIOS 'y
il !
I 41 30 ,TBOTLUSDPT sonTea, &I | SIeD 3 ,Uop

: «TBOT3USPT 30U, Al ‘ 9I039¢ 9anjea WIWIXBW
SNTRPA WNRWIXPW Juswobueiae
L TBOT3USDT 30U, 4I 93I039¢ oNTRPA WNWIUTW anTeA s
! WNAEAAE IHEAIUIDOP
mm ® S$3uU3s51dax 92TS,,
, 5I %0 ,S$INDD0 10318, JI $IBD § 60D
| W TBWUIOU ST 92TS,, 4aI L TE20TI3USPT 30U, L3S ‘SATLEO9U ‘SATITSOC PIXTW
[She - T 0= - B S At i e _ - - — Ty -
; 4 [BWIOU ST 827TS,, 4T L IBOTJUSPT 30U, I3 m ssnTeA aATIRDOSU Hﬂmm
| Lo :oT— s “a i i e e el e e Wi S SR Sl
L W TBWIOU ST 9ZTS,, I LW RBOTIUSPT sonies, LES oxsz TI® | ssnTea Aexie 7
w$INOD0 10138, IFES | DPUTNOE ISAA] UBKT ISIRBID
LW TBUWIOU ST 32TS, 1ES w punog xsddf | A
; LTS M YT I wao e S et S S ¥
e sjusssidsIr 9zTS, IES (Rexze szexsuabop) T
L SINDD0 10313, I3S (paTITOSQSUN ArIa®) 52Ts Aexize "7

POYISN 1S9 TRUOTLOUNS TPWIOZ oTAWeXF T-§£ 9I4el




error notification “error occurs’

unchanged

"values identical"” ‘

in ascendi ng order

‘*ascendi ng order" |

in descending order

[
"descending order" %




4, Test Representation Language (TRI. )

The Test Representation Language (7RlL) was developed to implement the category-
partition nethod. When used during the Test Design E base of the testing lifecycle,
the TRL files will form concise and uni form representations of the test designs for
the functional testing of the system

The TRL tool that inplenents the TRI | anguage processes the ASC1I formatted TRIL files
and produces ASCI| formatted result files that docunent the individual test cases
implied by the test design. The TRL tool docunents the description, categories, and
partition values to be used in each test case. Each TRL file is created and nodified
with an ASCI| editor and therefore can be easily nodified to adapt to changes in
functional specifications. The resulting test case descriptions can be used during
engi neering tests of the systemunder test to verify prelimnary procedures and
functions while work continues in the Test Specification E base, transformng the test
case descriptions into formal detailed test procedures

The TRL tool was witten in the “C programm ng |anguage and can be ported to any
platform t he SUN/SPARC and DOS environnments are the conputer platfornms on which it
currently runs. This tool differs from the one described in reference [1], in that
the TR tool is a general pernutation control |anguage that can be used in any

envi ronnent ; the output of TRI the tool. is ASCII files that can be used for
docunentation rather than an executable test script.

4.1 PRI, L.anguage Definition

The Test Representation l.anguage (TRL) provides a way to describe nmany test cases
with one TRL File. The | anguage consists of 1 comment character, 11 keywords, 2
field demarkation characters, a logical AND character, and a logical NOI' character
The processing rules for the keywords, coments, and fields appears in the following
sections and a summary of the Test Representation Language appears in Figures 4-1

4.1.1 Speci al Characters
There are five special characters in TRI, character set:
1) comrent character = asterisk (*) ;
2) start field character = open bracket ( [) ;
3) end field character = close bracket (1) :
4) logical AND character = comma (,); and
5) | ogi cal NOT character = exclanmation point (!).

The asterisk is for initiating a comment line, which is a line defined by the comment
character appearing as the first non-white-space character on a line in the TRL fi le.

‘The start field character and end field character are for specifying the begi nning
and ending of a partition constraint field. Partition constraint fields are
di scussed in detail in section 4.1.3.

The | ogical AND character and the |ogical NOT character are for specifying |ogica
relation inside a partition value constraint field that is used for setting
condi tional constraints. See section 41.3.1 and 4.1 .3.? for exanples of theiruse

4.1.2 Line Keywords

There are two types of keywords in the Test Representation Language: |ine-keywords
and fiel d-keywords. Tc be recognized as valid, the |ine-keywords should be the first
word on a line. These keywords are used to initiate a description of the test_

desi gns (DESCRI PTION), indicate the beginning of the categories and partitions
(PARAMETERS), indicate a certain type of category (TypEk) , specify the nane of a
category (NAME), set error message text (MESSAGE), and to indicate the start of the
bl ock that describes the partition value and constrains of each category (SAMPLES) .
The |ine-keywords are, respectively:

DESCRIPTION, PARAMKTERS, TYPE, NAME, SAMPLES, MESSAGE.

JWVH - 11



Figure 4-1 Test

Character or Keyword

*

DESCRIPTION

PARAMETERS

NAME
TYPE
SAMPLES

SET

LIMIT m

LABEL

ERROR n

MESSAGE n

Command Line Options

Representati on Language (TRL ) Sunmary

Purpose and/or Usage
Indicates a comment line.

Indicates the starting of a description block
that will be included in test cases.

Indicates the beginning of parameter
specifications.

Specifies the name of a parameter or category.
Indicates the type of category.

Indicates beginning of a samples block
defining the partition values and constraints,

Beginning of sample value constraint field.
End of sample value constraint field.

Field identifier indicating that pre-condition
constraints are listed in the current field.
Comma (,) is used for logical AND, exclamation
(!) for logical NOT.

Field identifier indicating that post-condition
constraints are listed in the current field.

Field identifier indicating that the number of
test cases involving this partition value should
be limited to m. If m is unspecified, the limit is
one test case.

Field identifier indicating that the specified
label should be listed for this partition value.

Field identifier indicating that the sample value
is an error exit. The error can be specified
using the optional n.

Indicates that a message block follows
corresponding to the errors in the partition
values. The message number can be specified
using the optional n.

For performing “count only, ” writing results
into separate files, and for including pre/post
conditions in output.

JVH - 12



4 .1.2.1 DESCRIPTION Keyword

The purpose of the DESCRI PTION keyword is to indicate the start of a description
bl ock . The description block will be printed at the top of each test case results
file. It is recommended that this contain the requirenents that the TRIL File
addresses, the TRL file nane, author, date, and a description of the general test
set .

The description block starts at the first non-comment line follow ng the DESCRI PTI ON
keyword; the block ends at the first comment. line or keyword line after the
description block has been started. 1t may contain blank |ines but no keyword lines
or comment |ines.

1f no DESCRI PTI ON keyword is found in the TRL file before the PARAMETERS keyword, or
there was no description block then the default description, which is the name of the
TRL file that contains the test design, will be printed at the top of each test casc
results file

Exanpl e 1

DESCRIPTION
*

*
Requirenents: 1.1, .7, 13
TRL File: el ectrical environment.lRI
(results in file: el ectrical environment .RES)
Last Modifi ed: 5/5/91

* This coment |line ends the block

Exampl e 2:
DESCR1PTI ON
* enpty description
PARAMETERS
4.1.2.2 PARAMETERS Keyword

‘1’ he purpose of the PARAMETERS keyword is to identify the beginning of the test
representation and the corresponding categories and partitions. [t _ nust appear
before all of the line-keywords, except DESCRIPTION. It can only appear once in the
TRL file. Al other keywords nust appecar after PARAMETERS in TRIL File.

Example 1:
*
PARAMETERS
X
4.1.2.3 TYPE Keyword
‘1’ he purpose of the TYPE keyword is to set the current type of the subsequent
paraneters and categories. The type associated with each parameter IS printed along
with the partition values in the test case files. The TYPE keyword nust be fol | owed

by the new default type specification on the sane line. The specification can have
al pha-nuneric characters, enbedded spaces, and punctuation characters.

If there is no specification (i.e. only white-space appears after the TYPE keyword) ,
then the previous TYPE setting will be used. The default TYPE setting is
“Paraneter”

Exanple 1
TYPE Input Paramcte:

JMH - 13




Examples 2, 3, 4, and 5:

TYPE Output Paraneter
TYPE State Parameter
TYPE Envi ronnent Par anet er
TYPE
4 .1.2.4 NAaME keywor d

‘1" he purpose of the NaME keyword is to set the nane of the current paraneter or

cat egory. ‘1" he NAMFE paraneter indicates the beginning of a new category

speci fication. The category specification consists of a NAME, setting and the samp es
or partition values associated with it as initiated by the SAMPLES keyword.

The NaME keyword nust be followed by the name specification on the same |ine. T he
specification can have al pha-nuneric character, enbedded spaces, and punctuation
characters . If there is no name specification (i.e. only white-space appears afte
the NAME keyword), then the default paranmeter name is used.

Ifthere are no samples following the NAME keyword line prior to the end-of-file or
the next NaMmw keyword line, then TRL processing stops

See the saMpLES keyword description, section 4.1 ,2.5, for information on SAMPLES.

Example 1 :
*
NAME sort order
*
SAMPLES

Exanpl e 2: .
NAME  Anything can follow this (even punctuation. !)
SAMPLES

4.1.2.5 SAMPLES Keyword

As mentioned above, the category specification consists of a NaME setting and the
sanpl es or partition values associated wWith it as initiated by the samMpLEs keyword.
This keyword begi ns the processing of the partition values and the partition value
constraints for the category indicated by the NaMK keyword.

The associated partition value block starts with the next non-comment line anti ends
with the subsequent blank line, comment line, or a line with another keyword on it.
An enpty block wWill cause TRL processing to stop

Details of the partition value constraint analysis can be found in the descr ptions
of the SET, | F, ERROR, L1MIT, and LaBrIl, keywords, in section 4.1.3,

In order to be recognized properly as partition value text, the partition va ue text
cannot start wWith the comment character , "*", and cannot contain any start «r end
field characters, “[” or “]”".

Exanple 1 :
*
NAME: sort order
SAMPIFES
* 3 sanples for “sort order™

*

JWH - 14




ascendi ng
descending
don’t care

* (this coment |ine ends the value line bl ock)
Example 2: )
NAME Anything can follow this (even punctuation.!)
SAMPLES
1
2
3
* (the blank line, above, ends the value |ine block)
4.1.2.6 MESSAGE Keyword
The MESSAGE keyword is used to start the processing of a nmessage bl ock of lines. The

messages in the nmessage bl ocks are printed when a partition value is used in a test
case that has an FRROR indication.

The format used for the Message Keyword is: MESSAGE n. The optional “n” is either
bl ank or an integer. ‘1" he MESSAGE keyword indicates that the next line or lines
should be entered in the "n"th position of theerror message list . If “n” is
unspeci fi ed, then the next avail abl e message nunber will be assigned.

The message block itself starts on the line following the line with the MESSAGE
keyword on it, and is termnated by a blank line, comment |ine, the end of the file
or a line with another keyword

No special processing for the nmessage line i s perforned beyond keeping track of the
error nessage list and its associ ated nunbers.

Exanple 1:

*

MESSAGE _ _
Error nmessage number i S the (next_ avail able)
Error message nunber is the (next available)+l

the comment |ine above term nates message processing
Example 2:
*
MESSAGE 6
Frror nmessage #6
Frror message #7
Error nmessage #8

* bl ank line terminated the nmessage processing.

4.1.3 rield Keywords

The field keywords are used in the partition value constraint fields to either
describe a partition value (LABEL), or to specify the constraints determ ned during
Step 4 of the category-partition method. The field-keywords for setting labels ant
constraints are

SET, 1F, LIMIT, ERROR, and IABEIL.

A partition value constraint field is associated with a particular partition value by
its physical location in the partition value bl ock. A line in this block consists of
the partition value text followed by zeroc or more constraint fields. The constraint
fields can extend beyond the physical line of the TRL file, but the partition value
text cannot. Partition value constraint ficlds are started by the start field
characters, “[”, and ended by the end field characters, “]”.

JMH - 15




As previously mentioned, part ition value text cannot st art with the comment
charact er, "*", antl cannot contain any start or end field characters, "[" or "] ".

The field keywords are described in the follow ng subsections.
4.1.3.1 SET Keyword

The purpose of the SET field keyword is to set post—conditions. As explained in
section 3.2.2.4, post-conditions (and pre-conditions) arise during the partition
constraint analysis step of the category-partition nethod. For a particul ar
partition value, the post-conditions specified in the SET field will be set if the
partition value is used in a test case. A corresponding pre-condition, as determined
by an 1F field, is used to control which partition values from different categories
are validly used together in a test case

The skT keyword nust be the first word following the “[” character. The
post-conditions thenselves are one or nore words that can consist of al phanuneric
characters plus 72, 0r ¢ The SET field IS terminated by a “]” or the end of the

l'i ne.
The | ogical AND character, a comma “,”, should separate post-conditions when more
t han one post-condition will be set.
Exanple 1
*
yAME sort order
SAMP LE S
* 3 samples for “sort order”
*
ascending [ 1F size ok, ruin max)
[ sk1 ascend, normal)
descendi ng (1F size ok, min max ]
[SET descend, normal ]
don’t care [1F 'normal)
[SKT dont_care]
*
* EXPLANATION:
*
* The "ascending™ anti "descending"™ values will be
* used only when the post- conditions “size 0k” and
* "min max" have been SET by the use of other partition
* values. . ) ]
* The use of “ascending” w 11 SET the “ascend” anti
* "normal * post-conditions . The use of “descending”
* will seET the “descend” and "normal “ post-
* conditions.
*
* The “don’t care” value Will only be used if the
* post-condition “nor-ma]” IS NOT SET by any other
* sanple value. When valid, the use of this partition
* value will SET the "dont care" post-condition.
*
4.1.3.2 IF Keyword

The purpose of the 1r field keyword is to set a pre-condition for the use of the
associ ated partition val ue. The 1 keyword must be the first word following the “[”
character . The pre-conditions thensel ves are one or nore words that can consist of
al phanunmeric character plus *+, or /-¢ The |F field is terminated by a “]".

The logical ANl) character, a comma “,”, can be used to separate a condition when
multiple pre-conditions are necessary before a partition value can be used in a test
case .

JMH - 16




The | ogical NOT character, an exclamation point * !", can precede a pre-condition to
indicate that a particular pre-condition cannot exist if the partition value is to be
used in a test. case.

The partition value text will only be used in a resulting test case if the pre-
conditions specified in the 1F field are met by the post conditions that are set
{(using the skT field keyword) by the other values in the resulting test case.

Fxampl ¢ 1 @

*

NAMF, sort order

*

SAMPLES

A 3 samples for “sort order"
ascendi ng [ 1¥ size ok, min max]
descendi ng [IF size ok, min max ]
don’t care [1F 'normal) ’

*

* KXPLANATION:

*

* the "ascending™ anti “descending” values wll be

* used only when the post-conditions "size ok" and

* “rein max” have been SET in other sample values.

* The “don’t care” value will only be used if the

* post-condition "normal" IS NOT SET by any other

* sanpl e val ue

A

4.1.3.3 1,1M1T Keyword

The Limit field keyword is used to set a limit on the number of test cases in which
the associated partition value can be used. The format of the field when LIMIT is

used is: [LIMIT n], where “n” is either blank or an integer. |If “n” is specified
then a maxi mum of this nunber of iterations will be allowed to be used in the
resulting test cases. The nunber "n" starts with the first nunmeric after the 1.iM17

keyword and ends with the first non-numcric following that

The 1.1MIT keyword must be the first word following the “[” character. 7The LIMIT
keyword indicates that the current partition value is limited to the nunber of
specified iterations, where “n” is the maximum. 1f “n” is not specified then “n” is

assunmed to he one. “I"he 11MI1T field is terminated by a “]”.
Fxample 1 :
*
NAME, sort order
*
SAMPLES
A 3 sanples for “sort order™
ascendi ng 1+ size 0OK, min max]
skT ascend, normal]
(L1M17T 10]
descendi ng (1F size ok, m n_rnax ]
[SET descend, normal]
don't care [1F 'normal)
. [SET dent-care]
*
* EXPLANATION:
*
* The ‘Ascending” and "descending” values Will be
* used only when the post-conditions "size ok" and
* "min max" have been set (using the SKET field keyword)
*

by other categories in the test design.

JMH - 17



The UsSC of "ascending” wi 11 SET the "ascend" and
"normal “* post-conditions. The “ascending”
partition value will be used a nmaxi mum of 10 ti nes.

The use of "descending" wil 1 SET the “descend”
and "normal post-condi tions. There is no LIMT
on the number of times the “descending” partition
val ue can be used in the test cases.

The "don’t care” value will only be used i f the
post-condition “normal” is NOT SEY by any other
sample value; it’ s use W 11 SET the dont care
post-condi tion. There is no LIMT

on the nunber of tines the “don’t care” partition
val ue can be used in the test cases.

¥ X X ¥ ¥ ¥ ¥ N N ¥ X & M ¥ X ¥

4.1.3.4 ERROR Keywor d

The purpose of the ERROR field keyword i s to indicate that the current partition
val ue represents an error condition. The partit ion value, therefore wll only be
included one tine in the resulting test cases. The ERROR keyword must be the first
word following the “[” character. The ERROR keyword indicates that the current
partition val ue should rai se an exception in the system under test and a specific
error message shoul d be observabl e.

The format of the field when ERROR is specified is: ERROR n. The optional “n” is

either blank or an integer. If "n" is specified then the "n"th message in the error
nessage list will be printed along with the use of this partition value! in a test

case . The nmessage list is determined by the MESSAGE keyword, as described in section
4.1.2.6.

The nunber- “n” starts with the first nuneric after the FRROR field keyword anti ends
with the first rlon-numeric following that. If “n” is not specified, then the errors
Wi ll be nunbered as they are encountered in the TRL fi le.

Exanmple 1:
*

NAMF sort order
SAMP1.FS
* 4 sanples for "sort order"
*
ascending [ IF size ok, min max]
[ sk ascend, normall
[LIMIT 10]
descendi ng (1F size ok, mn max ]
[SET descend, normal)
unspeci fied (1F all normal)

[SET dont care]
[FRROR 5]
don’ t care [IF 'normal)
[SET dont carel
*
MESSAGE 5
Frror Message #5: sort order was not set

KXPLANATI ON

The “ascendi ng” and “descending" values wi 11 be
used only when the post_- conditions "size ok” and
"mi N max" have been SET by the use of another
partition value in a different category.

The use of "ascendi ng"™ W ll SskT the "ascend" and

X F F N N N X A

JMH - 18




"normal “ post-condit jons . Also, the "ascen ding"
sample value wi 11 be used a maximum of 10 t imes.

The use of "descending” Will SET the “descend®
and "normal post-conditions . There is no LIMIT
on the number of times the "descending" sample
val ue! can be used in the test cases.

* o ok M M ¥ ¥

The wynspecified™ partition value will be used in a
test case only if the “all normal” post-conditions

was set. The "umnspecified" partition value will only
be used once and the 5th error nessage in the error
message list Will be printed when this partition

value i s used. The "dont care” post condition will be
set

The “don’t care” value will only be used if the
post-condition "normal" is NOT Skr by the use of
another partition value; if “don’'t care” is used, t hen
the dent car-e post-condition will get SET.

‘I"here is"'no LIMIT on the number

of times the "don’ t care" sample value can be used

in the test cases.

¥ ¥ o M ¥ X ¥ ¥ X ¥ F F % ¥ ¥ ¥

4.1.3.5 1LABEL Keyword

The purpose of the 1.ABEL field keyword is to indicate that the associated partition
val ue should be | abeled with the speci fied text when it IS used in a resulting test
case . The format of the field whenlABEL IS used iS: [LABEL label text], where
label text is any string of characters except “]7.

The LABEIL keyword nust be the first word following the “[” character. Thel.ABEIL
keyword indicates that the following label text is the label for t-he current
partition val ue. 1f “label text” is specified then the "lahel text” wll be printed
along With the use of this sanple. in a test case. Ot herwi se, the default label
"valid" W ll be used.

Example 1 :

*
NAME sort order
*
SAMPLES
* 4 samples for “sort order”
*
ascendi ng [ 1F size ok, min max]
[ skT ascend, nornmal]
(t.aM17 10]
(1ABEIL valid sort order]
descending ly size ok, min max |
[SET descend, normal]
[1.LABKI, valid sort order)
unspecified IF all_ normal]
[SET dont care)
[ERROR 5]
don't care [1F !'normal]
[SKT dont care]
[LABEL any valid sort order]
A

MESSAGE 5
Error Message #5; sort order was not set
*

* HXP1, ANATI ON:

* The “ascending" and "descending" values W 11 be

JMH-- 19




* used onl Yy when the post-condit i ons "size ok" and

*» *min max" have! been SET by L he use of othervalues in

* one o1 wore different categories specified in the

* TRI, file.

** Theuse of "ascending” will SET the "ascend" and
“normal “ post-conditi ens. Also, the "ascen di ng”
sample value Will be used a maximum of 10 tines.

The) use Of "descendi ng™ W 11 5k7T the "descend”
and “normal “ post-condit ions. Thereis no LIMIT
on the nunber of times the "descending" sample
val ue can be used in the test cases.

Bot h “ascendi ng” and “descending” will have the
label “valid sort order” listed in the resulting
test cases when these partition values are used.

The "unspeci fied" sample valuce Will be used in a
test case only if the "all normal” post-conditions
was set . This sample value will only be used once

and the S5th error nmessage in the nessage list will
be printed when this sample value i S used. The
“dent care” post condition Will be set .

The "don’t care™ value will only bhe used if the
post~condition "normal"™ is NOT SET by any other
sanple value; it’ s use will sET the dent care

post - condi ti on. ~ here is no 1.IMIT on the number
of times the "don’t care” sampl ¢ value can be used
in the test cases . This sample value wll have

the label “any valid sort order™ when it is used.

¥ ¥ ¥ X o A ¥ N ¥ X N A ¥ M X ¥ X ¥ ¥ X X ¥ ¥ ¥ ¥

4.2 kxample Application of Category-Par tition Method With TRI

In this section, the same exanple from section 3.2.2 will be discussed, but this
time, the Test Representation l.anguage (TRIL) will be used. To avoid confusion,the
procedures for- creating a test design using TRI. are referred to as stages, and the
procedures for implementing the categor y-partition method are referred Lo as steps .
These stages will be performed for each functional unit and/or test objective in the
system under test.

4.7?..1 TRI, STAGE 1: Unconstrained Representation

The first stage in the TRL procedure is to create an unconstrained representation of
the test design. 7This iS accomplished by performing the first 3 steps in the
category-partition method:

Step 1: Functional Decomposition (section 3.2.7?.1) ;
step 2: Category Analysis (section 3.2.2.2); ant
Step 3: pPartition Value Analysis (section 3.2.2.3)

As for creating a TRL File, the following TRL keywords anti information should be
created:
a) DESCRI PTI ON Keyword and the description block. Create a description
bl ock that contains the requirenents to be tested, the pass criteria to
be used, and any other pertinent information to the test design.
b) PARAVETERS Keyword. Start the parameter specification block.
c) TYPE Keywords and NAME Keywords. For each type of paranmeter anti category
identified in Step ? of the category-par tition method, create a TYPE anti
NAME specification in the TRL file.

d) SAMPLES Keywords and the partition val ues. For each category, add in the
unconstrained partition values that the category can assume during a
test

JWMH - 20




Fxample:
*

DESCRIPTION

Functional Unit: Sort an integer array either in ascending or
descending order.
*

PARAMETERS

*
TYPE Input-Categories for Parameter: Array

NAME array size
SAMPLES
0
1
2to Upper Bound mnus 1
Upper Bound
greater than Upper Hound

NAME  array val ues
SAMPLES
all Os
all the same but not O
all negative
all positive
m xed +/-/0
don’t care

NAME  val ue arrangement
SAMPLES
m ni mum before maximurn
maxirmurm before minimum
don’t care

TYPF  input-~ arameter: Sort Order

NAME  sort order
SAMPLES
ascendi ng
descending
unspeci fied
don't care
*

TYPE Qutput to program or change in state

NAME  result

SAMPLES
error notification
array unchanged
array in ascending order

array in descending order
A

* ond of file
h

Note that this example Wwith the unconstrained representation would produce 1440 test
cases.

4.2.? TRL STAGE 2: Error Constrai ned Representation
The second stage of this process is to addin the err-or indicators and the! nessage

descriptions. This corresponds to a portion of the fourth step in the category-

JMH - 21}




partition method: the part iti on constraint analys is

The following keywords and information should be added to the 7TRI file:

a) ERROR field keywords. For each partition value that should raise an
exception during testing, create an [FRROR | field and add it to the test
desi gn.

b) Message keyword and error message list block. For each ERROR field, make

sure there is a corresponding err-or nessage in a message |ist block.

See the example for TRL STAGE 4 for an illustration. When the error indicators are
added to the' 3 partition values as indicated below, 651 test cases result :

Cateqory Partition Value Fields
array size 0 [ERROR |
array Size greater than Upper Bound [ERROR ]
sort order unspeci fied [ERROR |

4.?.3 TRI, STAGE 3: Condition Constrained Representation

The third stage of test design creation using TRI, is probably the nmost difficult and
time consuming. Adding in the conditional statements to make sure that only the
technically feasible combinations of partition values get produced in thel resulting
test cases often takes many iterations. investigating exactly which combinations are
val id when used together and what the expected outputs of the system should be can
exposc MANY inconsistencies and undoc umented requi renents .

This stage, simlar to the previous one, corresponds to the fourth step in the
category-partition method. The purpose of this stage iS to determine the pre and
post condition pairs that describe the behavior of the system under test

To nodify the existing TRI, file so that the conditions are expressed, the SET anti 1F
field keywords must be added. There will be some occasions where the addition of
"don’t care” partition values, or even the addition of repeat partition values with
different conditions] fields attached, wll be necessary in order to produce the
opti mum set of resulting test cases.

The following keywords anti information should be added tc) the 1rL fi Je:
a) SET field keywords and post-conditions. For each partition value that
should cause a post-condition to exist if it IS usedin a test «ca set
create a post-condition value and append it to the inside of the [SkT ]

field. Use a logical AND character, “,”, to separate multiple post-
conditions.
b) | F field keywords and pre-conditions. For each partition value that is

valid only when combined with a particular part ition value. in another
category, append the condition value to the inside of the [IF ] field.

Use a logical AND character, “, “, to separate multiple pre-conditions; a

| ogi cal NOT character, ™!", in front of a condition expresscs that a
condition should NOT exist in order for the particular partition value to
be used in a resulting test case.

Again, the reader should be referred to the stage 4 discussion in section 4.2.4 for
an example that has pre and post conditions. Before the LIMIT fields are added to
the TRL file in stage 4, the 7RI results file contains 32 test cases, which together,
represent the complete functionality of the requirement being tested in this
functional unit. The purpose of the fourth stage is to reduce the nunber of test
cases even further so that testing of this functional uUnit takes | ess resources

4.2 .4 TRL, STAGE 4. Limit Constraint Representation
This final stage of 7TRL file development produces the lLimit Constrained
Representation of the test design. As explained in the description of the I,IMIT

field keyword, section 4.1.3.3, the purpose of the 1LIMIT field is to specify how many
times a partition value can be wused in the resulting set of test cases. Setting

JMH - 22




these limit values corresponds to the last step, © r sub- step, of the catea ory -
partition method, where the remaining par tition value const raint § are determi ned .

Also included in this stage is the labeling of the partition val ues. The purpose of
the labels is to provide the test engineer, who is performing the tests or
transformng the test cases into detailed procedures, as much information about the
test case as possible. The labels recommended are ones that describe the partition
value in terms of its range, such as “normal”, “low boundary", “high out-of-bounds”,
etc.

Therefore, the followi ng keywords and information should be added to the test design:

a) LIMT field keywords. For each partition value that should only be used
a certain nunber of tines, n, in the resulting test cases, crec ate a
[LiMiT n] field. Note that partition values wit-h an [ERROR ] field are
automatically limted to 1 test case.

b) LABEL keywords and |abel text. For some or all of the partition val ues
inthe 7r1, file, add a [1LABEI label text] field such that the
“label - text™ provides a description crf the partition value that willbe
useful to the other test engineers.

The exanple given in figure 4-2 produces 24 test cases when processed by the TRIL
Tool . Figure 4-3 gl ves an excerpt of the first two test cases fromthe resulting
test cases produced by the TRIL tool from the 7TRL test design documented in figure 4-
2.

Figure 4-2 Stage 4 Exanple of TRL Test Design

*****A**** * % * % * *
IEREEERE SR S y AAFARARARARI A R RRAIA AR AR R AN e . e . . . . . . . . . . . . . . e e
* STAGE 4,  ADD [LIMIT ] AND [IABEL. | FIKIDS
* to the TRI File

**.*****

B R R R R A A kR R R R R K Rk ok R ok ok kR kK kX N w
*

khkkk  kkkKkKkKkKk K Kk * ok Kk Kk Kk * *

DESCRIPTION

*

Test Representation for SORT requirement.,

File Name: SORT . 7RI

Vers on: 1.5 Frrors/Messages/Condi tions/l imits/lLabels
last Modified: 9/4/91

Modi ied Ry: J. Hops

*
*

PARAMETERS
TYPHK Input-Categories for Parameter: Array

NAME array size
SAMPLES
L}

5 partitions
*

0 (array unspecified) [ERROR 1]
{ SET error, dont care]
[

LARBET error condition |

1 (degenerate array) SET size 1, dont care )
I.ABE]. degenerate array)
? to UpperRBound mi nus 1 SET size ok ]
IABEL valid]
Upper Bound SR slze ok}
LAREL valid upper bound
greater than Upper Bound RROR 2]
SET error, dont careol

LARBEL invalid array siz

MESSAGHE 1
Array size of 0 is invalid or array sivze s unspecificd
Array size is greater than the Upper Bound of sizes

*

NAME array values
SAMPLES
*

JMH - 2

w




* b partitions, ! don’t care

all 0's b osive kY
[SET ali same, dont carel
all the same but not 0 I sivze ok}
SET all same, dont carc]
all negative It sirze ok] [SET not identical]
LIMIT 4]
all positive IV size ok] [SET not identical
LIMIT 4]
mixed +/-/0 IF size ok] [SET not identical)
don’t care 1 !'size okl
*
NAMEK value arrangement
SAMPLES
*
* ? partitions, 1 don't care
*
mi nimum be fore max [1F size ok, not ident ical )
maxi mum before min (1F size ok, not identicall
don’t care [1v 'not identicall
*
TYPE input-1’a2arueter: Sort Order
NAME sort order

SAMPLES

* 3 partitions, 1 don’t care

*
ascending Ik size nk, notident cal ] [ SET ascend]
descending IFsize ok, not ident call]l [ SKT descend
unspeci fied [FERROR 3 {1Fsize ok]

SETerror, dontcarc]

don’t care 1F dont ca rel

*

MESSAGH
Sort order is not specif ed

*

TYPE Output to program or change in state

NAME result

SAMPLES

*

* 4 partition values

error notification [1
array unch anged [1
array in ascending order [1
array in descending order [1

IF error]

Ao gL care, 'hoot ident ica 1)
Fascend, not ide ntic al |

F desce nd, not identical |

Figure 4-3 Test Case Results of Stage 4 Exanple of TRL Test Design

Description:

lest Representation for SORT requi rement

File Name: SORT.TRI
Version: 1.5 Frrors/Messages/Conditions/limits/lLabels
last Modified: 9/4/9]
Modified By: J. Hops
KRR K AR KA KA AKEKPEAEAE AKX L4 L4 4k
Case # 1
Label: 1 .6.3.4.1

PARAMETERS
Type : Input-Categor ijes for Parameter: Ay ray
Category Name: array size
Partition Value: O (array unspecificd)
Partitionlabel : crrorcondition

lterationnumber: 1

Category Name: array values

JMH - 24



Partition Valuce: don’t care
Partition label: instance va ue needed Lo pass crror

Category Name: value arrangement
Partition vValue: don’t care
Partition label: instance va ue necded to pass ¢rror

Type: Input-Paramcter: Sort Order
Category Name: sort order
Partition Value: don’t care
Partition label: instar wce value needed to pass crror
lype: Outputtoprogram or cha nge in state
Category Name: result
Partition Value: error noti fication

Partition Label : instance value neceded to pass er ror

Frror Ill: Array sizeof O is invalidor array sizeisunspecified,

I B R R RN RS EREESEREEEEEEEEE IRy
Case § ?
lLabel: ?. 6.3.4.?

PARAMETERS !
Type: Inp ut-Categories for Paramcte r © Array
Catcgory Name: array size
Part it ion Value: 1 (degenerate array)
Partitionlabel : degeneratoe array
Category Name: array values
Pargitionvalue: don’ t carc

Partitionlabel : valid

Category Name: valucarrangement

Partition Value: don’t care
Partitionlabel : valid
Type: Input-Parameter: Sort Order

Category Name: sort order

Partition Value: don’t care
Partition Label : valid
Type: Output topregramor chan ge in st ate

Category Name: result
Partition Value: ar ray unchanged
Partitionlabel : valid

Noerrorconditions exist.

RAR AR KRR AR A AR R R XA K R h R h AR KA R Kk %W

5. Concl usi on

The pu~-pose of the test design phase is to determine a set of technically feasible
anti reso urce frugal test cases that meet thel test objectives of the test plans anti
that verify the functional requirements Of the system under test. The category-
partition method can be used to determine test designs that meet this goal

The Test Representation Language (TR1) and the TRl computer tool, used to process
files witten in the |anguage, have proven very useful and efficient in implementing
the category-partition method. 1in one project in particular at our organization, the
test cases that. result fromthe 7TRI, tool are being used to verify the system
requirements i N the enginecer ing testing stage. Detailed test procedures Will be
developed based on the output of thel tool ,

As of yet, noobjective data have been collected that can be used to compare the

results of the testing process changes introduced by the use! of the TRl tool
However, the qualitative feedback received from both test engineer.s and software

JMH - 25



designers i S that the category-part it ion met hod and t he TRIL tool help themengineer
tests rather than just perforw tests. The ef fects of the method anti the tool may be
hard to quantify on an ongoing project . A way could be found to determine these
effects if a small, controlled case study were to be initiated where 2 groups perform
the sane job - one using TRL and the categor y-partition method, and the other using
neither .

Work i S continuing in enhancing the TRl tool to mect the needs of the test engineers
using it. Some keywords are being added to allow some very fine tuned control over
whi ch test cases get included in the results. We are also looking into an
enhancenent of the output capabilities.

In summary, the purpose and requirements of the test design phase of the testing
lifecycle have been explored and defined. The category-part ition method and the TRI,
tool are efficient ways to produce the test designs anti resulting test cases needed
as input into the followi ng phase of the testing lifecycle. The Test Representation
llanguage and the TRI. tool can be of use to the test engincer Or programier no matter
what level of testing is being performed. Myre effort should be placed in gathering
the necessary metrics to be able to quantify the benefits received fromimplementing
this process. 1f qualitative results are enough, however, most o0rgani zations couid
profit from an implementation similar to the TRL tool and the category-partiti on
nethod for bridging the gap between test requirements and test speci f i cat ions

ACKNOWLEDGEMENT S
The research described in this paper was carried out by the Jet Propulsion

laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Admi nistration.

REFERENCES

1. Balcer, MJ., Hasling, WM, and Ostrand, T.J., "Automatic generation of test
scripts from formal test specifications”, Communicat ions of the ACM  June
1989.

2. JP]l, Software Management Standards Packaqge, Version 3.0, JPL D-4000, December
1988, Jrl, internal Docunent.

3. Mlitary Standard Defense System Software Devel opment, DOD-STD-2167A, February
1988.

4. Myers, G J.,The Art of Software Testing, Wley Series in Business anti Data
Processing, John Wley and Sons, 1979

5. Ostrand, T.J. anti Balcer, MJ., “The category- partition method for specifying
anti generating functional tests”, Communications of the ACM Volume 31 Num 6,
June 1988.

6. Richardson, D.J., 0'Malley, O, and Tittle, C., "Approaches Lo specification-
based testing”, Communications of the ACM June 1989.

‘1. Weyuker, E.J., and Ostrand, ‘1’.J., "Thecories of program testing and the

application of revealing subdomains', 1kEE lransactions on Software
Engineering, Vol . SE-6, No.3, May 1980.

JMH - 26



